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Cocke (1969) showed that, on average, infinitesimal material lines and surfaces are 
stretched in incompressible isotropic turbulence. We have extended those results to 
obtain upper and lower bounds for the stretching of such infinitesimal elements in 
terms of the eigenvalues of the Green deformation tensor. These bounds are in turn 
used to find bounds for the stretching of finite material lines and surfaces. 

1. Introduction 
Cocke (1969) proved that in any incompressible flow that is statistically isotropic, 

the expected value of the change of the logarithm of line element lengths and surface 
element areas is greater than zero. Orszag (1970) noted that Cocke’s result, combined 
with the generalized arithmetic/geometric-mean inequality, implies that the 
expected value of the change in the mean-square length of line elements and the area 
of surface elements is also greater than zero, and provided a simple proof of that 
result. It should be noted that these results are purely kinematical, the dynamics of 
fluid motion does not enter. These works, and their historical background, are 
described by Monin & Yaglom (1975, p. 578). This work complements the work of 
Cocke (1969) and Orszag (1970). We shall show, first, that their results can be 
improved to obtain ‘tight’ upper and lower bounds for the ensemble-average 
stretching of material line and surface elements. Then we extend the results to 
arbitrary curves and surfaces, and obtain upper bounds for moments of the relative 
dispersion of two fluid particles in terms of their initial separation. 

Throughout this work we shall use x(a ,  t)  as the Lagrangian representation of the 
flow, i.e. the trajectory followed by the particle that is a t  position a a t  initial time 
to, and assume that it is smooth enough in a space-time region and is an invertible 
mapping for fixed t so that our manipulations are legitimate. Finally for an arbitrary 
vector u, with elements v,(i = 1,2,3),  v or 101 is its magnitude, v , ~  = av/au, or 
vi,, = av,/aa, is its gradient. 

2. Line stretching 
The motion of an infinitesimal material line element f is governed by 

(following the notation of Monin & Yaglom 1975), with the initial condition 
f(to) = f,. Here d/dt is the material derivative following the motion. The solution is 
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given directly by the flow map x(a ,  t )  as 1, = x , , ~  loj ,  where x(a ,  to) = a. The Jacobian 
of the flow map 

when the flow is incompressible, see Batchelor (1977, p. 79).  The length of a line 
element is given by 

where the Green deformation tensor T& = X , , ~ X , , ~  is a symmetric positive definite 
mat,rix which has real, strictly positive eigenvalues wi and determinant 

J = det ( x , , ~ )  = 1 

l2 = ld 1, = lo, I,, (3) 

(2) 

det (W)  = w1 w2 wg = det ( x ~ , ~ ) ~  = J2 .  (4) 

Let A = (a,) be the unitary (rotation) matrix corresponding to diagonalization of W. 
Then IAlol = I ,  and (3) becomes 

= w1 sin' 8 cos2 @ + w2 sin2 8 sin2 @ + w3 cos2 8, (5) 

where 8 and @ are spherical polar angles of the vector lo relative to the principal axes 
of W .  The polar axis of the system is taken along the eigenvector corresponding to 
w3. 

Equation ( 5 )  gives the square of the strain experienced by a single material line 
element in one realization of a flow. Following Cocke and Orszag, we shall use ( 5 ) ,  and 
the assumption of statistical isotropy, to determine bounds for fluid element 
stretching in isotropic turbulence. To do so, we need to define the ensemble over 
which the average is to be taken, and to make the appropriate assumptions about the 
joint probability distribution of the variables involved, namely w,, 8 and @. 

In general, the ensemble consists of a large collection of events, each of which is the 
deformation of a single fluid element at a single flow point. Both Cocke and Orszag 
consider the deformation of a fixed initial line element by an ensemble of isotropic 
flows. In  that case the deformations are obviously statistically independent of the 
line elements upon which they act, and the probability density is uniform over the 
unit sphere (0 < 8 d n, 0 < 11. < 2n) and depends only on w,. Ensemble averages over 
8 and 11. then reduce to averages over the unit sphere, which has the infinitesimal area 
sinOd8dllf and total area 4 ~ .  Their results remain valid for any ensemble of initial 
line elements, whether isotropic or not, so long as the elements are independent of the 
deformations, and the deformations are statistically isotropic. Conversely, the 
probability density is also uniform over the unit sphere when the ensemble consists 
of afixed deformation acting on an isotropic distribution of initial line elements, and 
therefore the results are also valid for anisotropic flows if the ensemble of line 
elements is statistically isotropic and independent of the deformations. The crucial 
assumption is the statistical independence of the deformations and the initial line 
elements. When the line elements and deformations are not independent the 
distribution will, in general, not be uniform even if the deformations and/or the line 
elements are isotropic with respect to a fixed frame. It is not clear, for example, that 
the average stretching of vortex lines in a fluid of low viscosity can be treated under 
this assumption. In  general dynamically significant initial material lines cannot be 
assumed a priori to be independent of the deformation tensor. Cocke applies an 
inequality to the logarithm (a concave function) of (5) and integrates over the unit 
sphere to arrive at  his result, while Orszag simply integrates (5) over the unit sphere 
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and applies an inequality to reach his result. We shall also use (5), and inequalities 
appropriate to various convex and concave functions to obtain more precise bounds 
for the average stretching. 

A lower bound can be found by considering the concave function $ = xi and, 
noting that the coefficients of wt in (5)  sum to one, applying to special case of Jensen's 
inequality (see the Appendix, equation (A 2)) to (5) : 

It is clear from (5) directly that 

1 1  

- < w;lsin e cos $1 + wflsin e sin $1 + w$cos el. (7) 

The averages over the unit sphere of the coefficients of wi in (6) and (7) are 2 and t 
respectively and give the bounds 

10 

We can also find bounds in terms of the sum of the eigenvalues: 

t((Wl + w2 + W 3 ) 9  < < ((w, + wz + w3)9 .  (9) 

The upper bound follows immediately since the coefficients of wi in (5) are bounded 
by one, and the lower bound is found by again using the concave function $ = d and 
(A 2) to give 

(t) 

w1 sin2 e cos2 I,+ + w2 sin2 e sin2 $ + w3 cos2 e 
w1 + w2 + w3 

1 - = (wl + w2 + w3)g 

10 

2 (w,+ w2 + W3)f 
wllsin 8 COB $1 + w21sin 0 sin $1 + w31cos el 

w1+ w2 f w ,  

The lower bound follows because the average over the unit sphere of the coefficients 
of wi in the inequality (10) is again t.  

We then obtain, by the same methods, bounds for the moments of 1/l0 in terms of 
moments of either the individual wi, or their sum. This can be accomplished simply 
by the above method and/or using the inequalities $(ar+br+cr) < ( a + b + ~ ) ~  < 
3r(ar+6r+cr)  for a ,  b ,c ,  T 2 0. Examples of these estimates which are sharp and 
symmetric are 

) for 2 < p <  co. (13) 
3 

Orszag's result (12) follows immediately by averaging ( 5 )  over the unit sphere. The 
lower bound in (1 1) and the upper bound in (13) follows from (A 2) using 4 = zz. The 
upper bound in (1 1) and the lower bound in (13) are a consequence of raising both 
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sides of (12) to the power &PI and applying (A 1). The direction of the inequality must 
be reversed when p > 2 owing to the convexity of q5. Finally, Cocke's (1969) result 

can be established in a similar way using the concave function q5 = log (x). 
Note that since all of the functions involved are strictly increasing, the 

inequalities in (6)-(14) are strict unless w1 = w2 = w3. This occurs only when Wis the 
identity matrix (rotation of the fluid element without distortion) and this must occur 
with probability one to have equalities in (8), (9), and (11)-(14). This is certainly 
not meaningful for turbulent flow, and the inequalities that involve ensemble 
averages are therefore all strict. When the isotropic turbulence is also incompressible 

(log:) > 0 and (f> > 1, 

for any p > 0. The second inequality in (15) (Orszag 1970) can be verified by either 
using the first inequality in 

or using the arithmetic geometric-mean inequality g(w: + w: + w:) >, ((wl w2 w~)~); 
directly to achieve the same end. 

3. Curve stretching 
In this section we extend the above results to the average deformation of a 

material curve. The inequality (A 3) used to carry this out is given in the Appendix. 
Let C(s ; to) be a parametric representation, for s in the interval [0,1], of a material 
curve a t  time to, C(s; t )  = x(C(s; to ) ,  t )  be the corresponding curve a t  time t ,  and Co 
and C be their arclengths. Define 

where the inequalities are the consequence of (A 2) and (A 1) respectively. Note that 
in homogeneous turbulence x(a ,  t) - a is statistically homogeneous in space, Monin & 
Yaglom (1971, p. 572)' and therefore any function of the partial derivatives x,,(a, t )  
is also statistically homogeneous in space. Consequently, for isotropic turbulence, 
ensemble averages of functions of wt, such as a, p, and y depend only on time. Bounds 
for the average arclengths in an isotropic incompressible flow can be written in terms 
of these quantities : 

Co < exp (log C> < (0 < yCo, (18) 

The derivation of these bounds goes as follows: since we can multiply 1, by 
any constant, no matter how small, without affecting the ratio l / l o ,  we let 
lo = dC(s; to)/ds = C(S; to). Then I = X, k(C(s, t o ) ,  t )  C;(s, t o )  and the first inequality 
in (15) implies that 

(21) ( loglx, ,~(s ; t , ) l )  = (logl) 2 logZ, = logIC(s;t,)(. 
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Consequently the first inequality in (18) follows from 

exp (log C) = exp ( log [ J : l y l d s ] )  

2 J: exp (log I 1) ds (by (A 3) S ,  = [0,1]) 

The second inequality in (18) is an immediate consequence of (A 1) with @ = exp (x), 
and the third follows from (12) by virtue of (A 1) with 4 = zi. The remaining 
inequalities follow simply from (8) and (9). 

Inequalities (1 1)-( 13) give 'tight ' upper and lower bounds for ( s,' laC(s; t)/aslp ds) 
in an obvious way and we use these to get bounds for the moments 

(( J: laC(s; t)/as( d s r )  for p > 0. 

Let 

then for an isotropic incompressible turbulent flow we can show that for p > 0 

ap = $( wfIz + w:l2 + wpI2), 

cp < (CP). (23) 

We can also show that for 0 < p < 1 
apmin{~C'(s;t ,)~~-l}CO < (CP) < ( C ) P  < cgCg, 

and for p 1 

Cg < cfCg < (C)p < ( C p )  < 3apmax{(C'(s;t,)~~-1}C0, 
where c2 is the minimum of the coefficients of C, in the upper bounds for (C) in 
(18)-(20), c1 is the maximum of the coefficients in the lower bounds, and the min and 
max functions are taken over s in the interval [0,1]. The bound (23) is established by 
raising the left-hand side of (18) to the power p ,  taking p inside the log, and then 
using (A 1) with q5 = exp (z). Next we note that the right-hand side of ( 5 )  is always 
less than or equal to w1 + w2 + wg so that tP/ l t  < wfI2 + wgIz + wflz for 0 < p < 2. Then 
we can replace the left-hand side of (11) by 3ap and use (A 1) with @ = x p  and (11) to 
(13) to get the leftmost inequality of (24) and the rightmost inequality of (25). The 
remaining inequalities follow from (18)-(20). 

These results enable us to obtain bounds for moments of the length of an 
initially straight line segment, and for moments of the dispersion of two points, in a 
turbulent flow. Consider the special case of an initially straight material line 
C(s;t,) = al+s(a2-ul ) ,  and note that IC'(s;t,)I = la2-a,l E L ,  is independent of s. 
It follows from (23)-(25) that for p > 0 
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where d, = min[cf,a,] and d2 = max[cf,3ap3 with c,, c2 and ap defined as in (24) 
and (25). 

4. Surface stretching 
The results for the line stretching can be extended to the stretching of a material 

surface, just as in the work of Cocke (1969) and Orszag (1970). Only minor 
modifications are required. 

Let lo and k, be two infinitesimal line elements at  t = to and form an infinitesimal 
surface by taking their vector product So = lo x k,. At time t the surface element is 
deformed into 

S = l x k =  ( X , ~ Z , J X ( X , , ~ ~ ~ ) .  (28) 

Let the deformation tensor W, its eigenvalues wt, and the rotation matrix A be 
defined as before. Use of the vector identity 

(29) la x b12 = la121b12 - (a .  b)2 

and S2 = (Al, x AkOl2 gives the stretching of a material surface element by one 
realization of a velocity field, 

= w2 w3 sin2 8 cos2 $ + w1 w3 sin2 8 sin2 + w1 w2 cos2 8, (30) 

where 8 and y? are spherical polar angles of the vector lo x k, relative to the principal 
axes of the symmetric tensor that arises when Sa is formed by squaring (28). This 
matrix is analogous to W and can be written in terms of it. Equation (30) is 
analogous to (5) and we need only to replace the eigenvalues w1,w2,w3 by the 
eigenvalues w2 w3, w3 wl, w1 w2 ; the line elements 1, lo by the surface elements S,  So;  
the arclengths C, C, by the surface areas S, So ; and the line interval [0,1] by the 
surface domain 9 in the line-stretching results to obtain the new ones for surface 
stretching. Here S(u, v ;  to )  is the parametric representation at  the initial time to of the 
material surface. Its area, which is initially So, becomes 

at  time t .  
The only non-symbolic modifications of our analysis are : 
(a )  if the area of 9 is not one in (23)-(25), the right-hand side of (25) and the left- 

hand side of (24) must be multiplied by the area of 9 to the power p -  1 for correct 
usage of Jensen’s inequality; 

( b )  in (25) and (27) the notion of a distance between two points has to be replaced 
by the projected area of a region onto a plane and the left-hand side of (27) has to 
be interpreted correctly. 

5. Summary 
In a turbulent flow one expects the average length (area) of a finite material line 

(surface) to stretch, in comparison with its initial value, in the course of its time 
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evolution. We have shown that this is indeed the case for isotropic incompressible 
turbulence. Moreover, we have also obtained upper and lower bounds for all the 
moments of the amount of stretch in terms of the eigenvalues of the Green 
deformation tensor. The results have been subsequently used to give an upper bound 
for all the moments of the relative dispersion of two fluid particles in terms of their 
initial separation. This work, to some extent, uses and completes the work of Cocke 
(1969) who basically shows that the moments of infinitesimal material line (surface) 
elements only increase in time. 

I would like to  thank Robert S. Rogallo for introducing me to  this problem and 
also for helping me to revise the manuscript. I have also benefited considerably from 
my numerous conversations with Parviz Moin on this subject. 

Appendix. 
(Jensen’s inequality). Let X be a random variable and # a convex (concave) 

function containing the range of X. Assume that both X and #(X) have ensemble 
averages, then 

For a proof, see any textbook on probability theory or measure theory, e.g. 
Billingsley (1986, p. 283). 

The following special case of Jensen’s inequality has been used frequently in this 
work. Let p,, p,, and p ,  be three positive numbers that sum to one, and let a,, a,, 
and u3 be any real numbers. Then for convex (concave) functions # as above we have 

#((X>) G ( 3 )  (#(X)>. (A 1) 

(-1 

This is obtained by taking X in (A 1) as a random variable that takes the value a, 
with probability p i  for the ensemble i = 1,2,3.  

Let Y ( t )  be a random process. Then under minimum regularity conditions 

This is the consequence of the following more general result that  can be found in 
Dunford & Schwartz (1958, p. 535). 

Let (8, C,p) and (a,, C,, p,) be positive measure spaces. Assume p(8) = 1. Then if 
K is p x pL,-measurable function defined on S x S,, 
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